Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 1): 128884, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141708

RESUMO

Biofilm-mediated strategy was studied for ZnO nanoparticle removal from aqueous media. Bacillus subtilis isolated from the soil rhizosphere was selected based on its high viscosity (133 Pa/s) of the cultivated culture and biofilm formation. The bacterium was exposed to gamma-irradiation to enhance EPS production along with its cultivation in EPS-producing media. The results show an increase in viscosity that reached 160 Pa/s at 2 kGy. EPS production increased from 4.45 to 7.95 mg/mL and the protein/carbohydrate ratio increased from 3 to 4.4 which reflects the stickiness of EPS. Thermal Gravimetric Analysis (TGA) showed 2 phase weight loss for gamma irradiated EPS and defined protein peaks when characterized using Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF). Native and gamma-irradiated Bacillus subtilis cells with their enhanced EPS were grown as a biofilm on sterile waste gauze fabric, Scanning Electron Microscopy (SEM) showed an increased biofilm attachment in gamma-irradiated samples. The latter was used for the removal of ZnO NP from aqueous media. Energy dispersive X-ray (EDX) mapping confirms that ZnO NPs were entrapped within the carbon and oxygen elements forming the biofilm with net intensities of 14.04, 1713, and 1190, respectively. The results confirm that biofilm-mediated strategy is effective in nanoparticles removal.


Assuntos
Nanopartículas , Óxido de Zinco , Bacillus subtilis/metabolismo , Biofilmes , Microscopia Eletrônica de Varredura
2.
Microb Cell Fact ; 22(1): 142, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528356

RESUMO

Malachite Green (MG) dye of the triphenylmethane group is a toxic compound used in the aquaculture industry as an antifungal agent, however, it can accumulate in fish and pose toxicity. The present work aims to remove MG in Microbial Fuel Cell (MFC) as a sustainable and eco-friendly solution. Out of six samples, the highest malachite green degradation was obtained by a sample obtained from Robiki tannery site in agar plates in 24 h at 37 °C. Robiki sample was used to inoculate the anodic chamber in Microbial Fuel cell, the resulting average electricity production was 195.76 mV for two weeks. The decolorization average was almost 88%. The predominant bacteria responsible for MG decolorization and electricity production were identified using 16S rRNA as Shewanella chilikensis strain MG22 (Accession no. OP795826) and formed a heavy biofilm on the anode. At the end of the decolorization process, MG was added again for re-use of water. The results showed efficiency for re-use 3 times. To ensure the sterility of treated water for re-use, both UV and filter sterilization were used, the latter proved more efficient. The obtained results are promising, MFC can be used as recirculating aquaculture system (RAS). The same aquaculture water can be treated multiple times which provides a sustainable solution for water conservation.


Assuntos
Fontes de Energia Bioelétrica , Shewanella , Animais , Fontes de Energia Bioelétrica/microbiologia , RNA Ribossômico 16S/genética , Eletricidade , Eletrodos , Aquicultura , Água
3.
RSC Adv ; 13(31): 21558-21569, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37476035

RESUMO

Nanodyes are a new class of hazardous materials that are used in textile coloring. Their small size, color, stability and high dispersion characteristics pose a huge threat if they are released in open water systems. The aim of the present study is to test electron beam irradiation, bioflocculation and their sequential use for nanodye removal. The nanodye was obtained from a factory and was characterized using UV-visible spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, dynamic light scattering, zeta potential and energy dispersive X-ray (EDX). The obtained results show that applying 7.5 kGy electron beam irradiation results in complete color removal in 10 min for 50 and 100 ppm nanodye, while at 200 and 400 ppm concentrations, the decolorization reaches 90% but leaving a residual brownish color. Adding 5 mg mL-1 of Serratia marcescens N2 biosurfactant resulted in agglomeration of 80% dye removal for 400 ppm nanodye after 24 h. On the other hand, the use of sequential electron beam and bioflocculation led to an initial removal of 80% in 1 h. The residual dyes were tested for toxicity on normal dermal HFB4 cells. The toxicity result was 1.19% after electron beam treatment, while those for sequential treatment and bioflocculation were 6.28 and 6.9%, respectively. It can be concluded that electron beam technology provides fast and highly efficient nanodye removal, while biosurfactants offer a low-cost, eco-friendly approach with a chance for dye retrieval.

4.
World J Microbiol Biotechnol ; 39(6): 154, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37037954

RESUMO

The increase in using antibiotics, especially Azithromycin have increased steadily since the beginning of COVID19 pandemic. This increase has led to its presence in water systems which consequently led to its presence upon using this water for irrigation. The aim of the present work is to study the impact of irrigation using Azithromycin containing water on soil microbial community and its catabolic activity in the presence of phenolic wastes as compost. Wild berry, red grapes, pomegranate, and spent tea waste were added to soil and the degradation was monitored after 5 and 7 days at ambient and high temperatures. The results obtained show that at 30 °C, soil microbial community collectively was able to degrade Azithromycin, while at 40 °C, addition of spent tea as compost was needed to reach higher degradation. To ensure that the degradation was biotic and depended on degradation by indigenous microflora, a 25 kGy irradiation dose was used to kill the microorganisms in the soil and this was used as negative control. The residual antibiotic was assayed using UV spectroscopy and High Performance Liquid Chromatography (HPLC). Indication of Azithromycin presence was studied using Fourier Transform Infrared Spectroscopy (FTIR) peaks and the same pattern was obtained using the 3 used detection methods, the ability to assign the peaks even in the presence of soil and not to have any overlaps, gives the chance to study this result in depth to prepare IR based sensor for quick sensing of antibiotic in environmental samples.


Assuntos
COVID-19 , Microbiota , Poluentes do Solo , Humanos , Azitromicina/farmacologia , Azitromicina/análise , Antibacterianos/farmacologia , Antibacterianos/análise , Temperatura , Solo/química , Tratamento Farmacológico da COVID-19 , Biodegradação Ambiental , Fenóis/análise , Água , Chá , Microbiologia do Solo , Poluentes do Solo/metabolismo
5.
Environ Technol ; : 1-12, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36689460

RESUMO

Bacillus sp. possessing a periplasmic nitrate reductase was used as a recognition element to develop a nitrate biosensor. The bacteria was embedded within a polyaniline (PANI) electro-conductive matrix via electro-polymerization on miniaturized carbon screen-printed electrodes (SPE) at 100 mV/s and scan rate from -0.35 V to + 1.7 V. Surface medication of SPE was verified via Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The optimal bacterial density was OD600 1.2. To enhance the biosensors performance, Bacillus sp. was (1) grown in riboflavin (RF) inducing media as an endogenous redox mediator and (2) exposed to different gamma radiation doses as a physical method to increase electron transfer. Results show a link between exposing cells to gamma irradiation stress, this was evident by electron spin resonance (ESR) and changes in FTIR spectrum, in addition to the increase in catalase enzyme. The nitrate limit of detection (LOD) was 0.5-25 mg/L for non-irradiated RF induced immobilized cells and LOD was 0.5-75 mg/L nitrate for 2 kGy gamma irradiated cells. The prepared biosensor showed acceptable reproducibility and multiple usages after storage at 4°C over 3 months. Low cost and simple preparation allow the biosensor to be mass-produced as a disposable device. Bacillus sp. and its endogenous redox mediator immobilized within polyaniline are good candidates for the improvement of amperometric biosensors for the quantification of nitrate in aqueous solutions.

6.
RSC Adv ; 13(3): 1842-1852, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712634

RESUMO

Calcium carbonate microspheres are attractive for their biocompatibility, high loading capacity and easy preparation. They can be used in biomedicine and catalytic applications. In the present work, calcium carbonate microspheres were surface modified with polyvinylpyrrolidone (PVP) followed by irradiation at 5 kGy prior to coating with Bacillus sp. cells. To provide cell protection and internal energy storage, polyhydroxybutyrate (PHB) was induced using 3 factors 2 levels factorial design where the order of effect on PHB% was pH > incubation time > glucose concentration. The highest production was 81.68 PHB% at pH 9, 20 g L-1 glucose and 4 days incubation time. Bacillus sp. cells grown under PHB optimal conditions were used to coat the surface modified calcium carbonate microspheres. Characterization was performed using X-ray diffraction, Fourier Transform Infrared Spectroscopy, Dynamic light Scattering, Zeta potential and Scanning Electron Microscopy. The results obtained confirm the formation and coating of microspheres of 2.34 µm and -16 mV. The prepared microspheres were used in bioremoval of methylene blue dye, the results showed spatiotemporal response for MB-microsphere interaction, where PHB induced Bacillus sp. coated microspheres initially adsorb MB to its outer surface within 1 h but decolorization takes place when the incubation time extends to 18 h. The microspheres can be reused up to 3 times with the same efficiency and with no desorption. These results suggest that the surface modified calcium carbonate can be tailored according to the requirement which can be delivery of biomaterial, bioadsorption or bioremediation.

7.
Environ Sci Pollut Res Int ; 30(12): 33907-33916, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36502479

RESUMO

Textile wastewater still poses a huge environmental problem due to its high water consumption and high effluent release that is full of toxic chemicals. In the present study, different approaches were studied to layout an operating procedure for textile wastewater treatment in order to obtain treated wastewater that is safe for non-potable uses. Our approach depended on (1) co-substrate to biostimulate indigenous microbial textile wastewater community by adding Tryptone Soy Broth (TSB) and TSB supplemented with 1% glucose, (2) co-culture (bioaugmentation) with Bacillus spizizenii DN cells (previously isolated, identified and characterized as efficient decolorizing bacteria), and (3) co-metabolites using Bacillus spizizenii DN metabolites. The obtained results show that using Bacillus spizizenii DN cells resulted in 97.78% decolorization while adding Bacillus spizizenii DN metabolites resulted in 82.92% decolorization, both after 48 h incubation under microaerophilic conditions. The phyla identified for all treatments were Bacteroidota, Firmicutes, and Proteobacteria. The dynamic changes in the bacteria showed that both Clostridium and Acinetobacter disappeared for co-substrate, co-culture, and co-metabolite cultures. While Alkalibacterium and Stenotrophomonas appeared after adding Bacillus spizizenii DN cells, Flavobacterium increased for co-substrate and co-metabolic cultures while iron reducing bacteria appeared only for co-metabolic cultures. The use of 25 kGy gamma irradiation as a sterilization dose post bioremediation ensured safe use of treated wastewater. This was confirmed by cytotoxicity assay; the obtained IC50 tested on BJ fibroblasts obtained from skin showed that gamma irradiated treated wastewater are about 80.1% less toxic than non-irradiated treated wastewater. We conclude that (1) we can use combined bioaugmentation and biostimulation as initial steps for in situ bioremediation in collection tanks and that (2) the proposed protocol for bioremediation of industrial wastewater should be tailored based on the required application and level of safety needed for re-use.


Assuntos
Bacillus , Purificação da Água , Águas Residuárias , Consórcios Microbianos , Bacillus/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Purificação da Água/métodos , Têxteis , Indústria Têxtil , Corantes/metabolismo
8.
Microb Cell Fact ; 21(1): 151, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907859

RESUMO

BACKGROUND: The complexity, toxicity and abundance of frying oil waste (FOW) render it difficult to be degraded biologically. The aim of the present work was to valorize FOW and investigate the potential use of the produced biosurfactant by Serratia marcescens N2 (Whole Genome sequencing accession ID SPSG00000000) as a biodetergent. RESULTS: Serratia marcescens N2 demonstrated efficient valorization of FOW, using 1% peptone, 20% FOW and 8% inoculum size. Gene annotation showed the presence of serrawettin synthetase indicating that the produced biosurfactant was serrawettin. Zeta potential and Fourier Transform Infrared (FTIR) spectroscopy indicate that the biosurfactant produced was a negatively charged lipopeptide. The biosurfactant reduced the surface tension of water from 72 to 25.7 mN/m; its emulsification index was 90%. The valorization started after 1 h of incubation and reached a maximum of 83.3%. Gamma radiation was used to increase the biosurfactant yield from 9.4 to 19.2 g/L for non-irradiated and 1000 Gy irradiated cultures, respectively. It was noted that the biorecovery took place immediately as opposed to overnight storage required in conventional biosurfactant recovery. Both chemical and functional characteristics of the radiation induced biosurfactant did not change at low doses. The produced biosurfactant was used to wash oil stain; the highest detergency reached was 87% at 60 °C under stirring conditions for 500 Gy gamma assisted biorecovery. Skin irritation tests performed on experimental mice showed no inflammation. CONCLUSION: This study was able to obtain a skin friendly effective biodetergent from low worth FOW using Serratia marcescens N2 with 83% efficient valorization using only peptone in the growth media unlike previous studies using complex media. Gamma radiation was for the first time experimented to assist biosurfactant recovery and doubling the yield without affecting the efficiency.


Assuntos
Serratia marcescens , Tensoativos , Animais , Lipopeptídeos/metabolismo , Camundongos , Peptonas/metabolismo , Serratia marcescens/química , Tensão Superficial , Tensoativos/metabolismo
9.
RSC Adv ; 12(10): 5749-5764, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424538

RESUMO

Microbial fuel cells (MFCs) are recognized as a future technology with a unique ability to exploit metabolic activities of living microorganisms for simultaneous conversion of chemical energy into electrical energy. This technology holds the promise to offer sustained innovations and continuous development towards many different applications and value-added production that extends beyond electricity generation, such as water desalination, wastewater treatment, heavy metal removal, bio-hydrogen production, volatile fatty acid production and biosensors. Despite these advantages, MFCs still face technical challenges in terms of low power and current density, limiting their use to powering only small-scale devices. Description of some of these challenges and their proposed solutions is demanded if MFCs are applied on a large or commercial scale. On the other hand, the slow oxygen reduction process (ORR) in the cathodic compartment is a major roadblock in the commercialization of fuel cells for energy conversion. Thus, the scope of this review article addresses the main technical challenges of MFC operation and provides different practical approaches based on different attempts reported over the years.

10.
World J Microbiol Biotechnol ; 38(5): 83, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35352211

RESUMO

To this day, bioelectrochemical systems are still perceived as one of the rising technologies due to their versatile applications in electricity production, bioremediation, biosensors, and production of value-added products. While the majority of bioelectrochemical applications utilize Gram-negative bacteria, Gram-positive bacteria has not received sufficient attention. The lack of adequate knowledge about their electron transfer pathways along with the presence of a thick non-conductive cell wall are among the reasons behind their limited use. In this review, the electroactivity of Gram-positive bacteria will be covered describing the different pathways of electron transfer among different electroactive Gram-positive strains. Special emphasis will be given to the role of multiheme cytochromes, quorum sensing molecules, peptide-based signalling, and pili in the extracellular electron transfer. This review will also provide an overview of possible approaches for enhancement strategies of electron transfer such as enhancing biofilm formation, biocomposites and cell perforation. Understanding the fundamentals is critical for improving the use of Gram-positive bacteria in bioelectrochemical systems and may lead to the discovery of new applications.


Assuntos
Elétrons , Bactérias Gram-Positivas , Eletricidade , Transporte de Elétrons , Percepção de Quorum
11.
Environ Sci Pollut Res Int ; 29(21): 31501-31510, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35001269

RESUMO

Extensive use of engineered nanoparticles has led to their eventual release in the environment. The present work aims to study the removal of Polyvinylpyrrolidone-coated silver nanoparticles (PVP-Ag-NPs) using Aspergillus niger and depict the role of exopolysaccharides in the removal process. Our results show that the majority of PVP-Ag-NPs were attached to fungal pellets. About 74% and 88% of the PVP-Ag-NPs were removed when incubated with A. niger pellets and exopolysaccharide-induced A. niger pellets, respectively. Ionized Ag decreased by 553 and 1290-fold under the same conditions as compared to stock PVP-Ag-NP. PVP-Ag-PVP resulted in an increase in reactive oxygen species (ROS) in 24 h. Results show an increase in PVP-Ag-NPs size from 28.4 to 115.9 nm for A. niger pellets and 160.3 nm after removal by stress-induced A. niger pellets and further increased to 650.1 nm for in vitro EPS removal. The obtained findings show that EPS can be used for nanoparticle removal, by increasing the net size of nanoparticles in aqueous media. This will, in turn, facilitate its removal through conventional filtration techniques commonly used at wastewater treatment plants.


Assuntos
Nanopartículas Metálicas , Prata , Aspergillus , Aspergillus niger , Povidona , Prata/farmacologia
12.
Biotechnol Lett ; 43(11): 2185-2197, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510307

RESUMO

The presence of different pollutants in wastewater hinder microbial growth, compromise enzymatic activity or compete for electrons required for bioremediation pathway. Therefore, there is a need to use a single microorganism that is capable of tolerating different toxic compounds and can perform simultaneous bioremediation. In the present study, nitrate reducing bacteria capable of decolorizing azo dye was identified as Bacillus subtillis sp. DN using protein profiling, morphological and biochemical tests X-ray diffraction pattern, Raman spectroscopy and cyclic voltammetry confirm that the bacterium under study possesses membrane-bound nitrate reductase and that is capable of direct electron transfer. The addition of nitrate concentrations (0-50 mM) resulted in increased biofilm formation with variable exopolysaccharides, protein, and eDNA. Fourier Transform Infrared spectrum revealed the presence of a biopolymer at high nitrate concentrations. Effective capacitance and conductivity of the cells grown in different nitrate concentrations suggest changes in the relative position of polar groups, their relative orientation and permeability of cell membrane as detected by dielectric spectroscopy. The increase in biofilm shifted the removal of the azo dye from biodegradation to bioadsorption. Our results indicate that nitrate modulates biofilm components. Bacillus sp. DN granular biofilm can be used for simultaneous nitrate and azo dye removal from wastewater.


Assuntos
Bacillus , Biodegradação Ambiental , Biofilmes , Nitratos/metabolismo , Compostos Azo/isolamento & purificação , Compostos Azo/metabolismo , Bacillus/química , Bacillus/genética , Bacillus/metabolismo , Modelos Biológicos , Águas Residuárias/química , Purificação da Água
13.
Enzyme Microb Technol ; 147: 109767, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33992401

RESUMO

A biosurfactant producing Gram positive bacterium isolated from anodic biofilm of textile wastewater fed MFC was identified as Bacillus sp. MFC (Accession number: MT322244). Scanning Electron Microscopy of the bacterium showed appendages, the bacterium forms biofilm on Congo red agar medium. The obtained results showed that the addition of 5 mg/l endogenous biosurfactant to the bacterial cells resulted in 19-fold increase in bacterial surface-bound exopolysaccharides (EPS) and 1.94-fold increase in biofilm. However, when the biosurfactant concentration increased to 20 and 40 mg/l, EPS and biofilm decreased and the cells lost their colony forming ability. The dielectric properties of the bacterial cells showed increase in conductivity and relative permittivity with increasing biosurfactant concentrations. The shape of the voltammogram currents peak, their location and Electrochemical impedance spectroscopy (EIS) suggest the involvement of biofilm as direct electron transfer pathway. The average voltage obtained was 0.65 V as compared to 0.45 V for the control MFC. Decolourization was tested for Congo red in a double chamber Microbial Fuel Cell (MFC), the results showed 2-fold increase in decolourization when biosurfactant is added post biofilm formation. The results confirm that Bacillus sp. MFC possess electrogenic properties and that adding low concentrations of endogenous biosurfactant to 24 h biofilm accelerates electron transfer by inducing perforations in the cell wall and increasing EPS as an electron transfer transient medium. Therefore, MFC performance can be enhanced.


Assuntos
Bacillus , Fontes de Energia Bioelétrica , Biofilmes , Eletrodos , Transporte de Elétrons
14.
Environ Technol ; 42(1): 148-159, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31140952

RESUMO

The slow electron transfer between microbial outer membrane and electrode surface is considered one of the limitations of Microbial Fuel Cell (MFC) performance. The aim of the present work is to assess the role of palladium α-lipoic acid nanocomplex compound (PLAC) in promoting bacteria-anode interfacial electron transfer, by studying the dielectric properties of Shewanella oneidensis WW-1 cell membrane and its contribution to biofilm formation on the anode. The results showed that adding PLAC increased bacterial cell membrane permeability and outer cell surface charge. Exopolysaccharides (EPS) and surface-bound proteins increased 2.27 and 1.14 fold, respectively upon adding 0.25% v/v PLAC. Dynamic Light Scattering (DLS) showed uniform distribution of Shewanella-PLAC biocomposite size while Zeta potential and Fourier Transform Infrared (FTIR) Spectroscopy results suggest that PLAC diffused inside the cells. Transmission Electron Microscope (TEM) images reveal Exopolysaccharide (EPS) mat around the cells when PLAC was added to the cells, also confirmed by the FTIR spectrum. Scanning Electron Microscope and Atomic Force Microscope (AFM) confirmed the thickness of biofilm in the presence of PLAC. The average voltage reached 492 mV (external resistance 1 KΩ) over 35 days using 0.25% v/v PLAC as compared to a few hours in MFCs lacking PLAC. The results suggest that the addition of PLAC assisted in interfacial direct electron transfer through enhancing biofilm formation, moreover, its hydrophilic/lipophilic nature facilitated the electron shuttling process from within the bacterial cell to the electrode surface suggesting the involvement of mediated electron transfer as well.


Assuntos
Fontes de Energia Bioelétrica , Shewanella , Biofilmes , Eletrodos , Transporte de Elétrons , Elétrons , Paládio
15.
Integr Environ Assess Manag ; 16(4): 508-516, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32104954

RESUMO

Lead mobilization in aquaculture and its generated health hazards prompted the use of a cheap and reusable method for its removal within a short duration. A 3D macroporous microbial biomat formed of Trichoderma viride immobilized on luffah was used for Pb removal. The biomat was used to remove 79% of initial 400 mg/kg Pb in 24 h that increased to 87% under optimized conditions of pH, temperature, and contact time. In order to reduce the time needed for Pb bioremoval to 1 h, pretreated biomats were used, resulting in an increase in removal from 58% to 96% upon exposure to gamma radiation (0.01 kilogray [kGy]). The irradiated biomat was studied in terms of morphology, elemental analysis of surface biosorbed Pb and surface functional groups using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The results show a difference in the adsorption pattern. The biomat was reused efficiently for 3 consecutive cycles and was also used in fixed bed column showing 89% removal for downward flow and in real aquaculture samples. Pretreated microbial biomats are very suitable for use in fixed bed reactors or as a biofilter and can be tested in recirculating aquaculture systems (RASs), thereby contributing to water conservation and aquaculture sustainability. Integr Environ Assess Manag 2020;16:508-516. © 2020 SETAC.


Assuntos
Aquicultura , Chumbo , Poluentes Químicos da Água , Adsorção , Biomassa , Raios gama , Concentração de Íons de Hidrogênio , Cinética , Purificação da Água
16.
Environ Technol ; 40(18): 2416-2424, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29455620

RESUMO

Pentachlorophenol (PCP) degradation by soil indigenous bacteria represents a practical and cost-effective solution. In the present study, bacteria isolated from paddy soil was investigated and the role of electron shuttling (ES) in the PCP degradation process was assessed. Two strains demonstrated the highest PCP degradation of 93.5% and 94.88% in the presence of citrate and were identified using 16S rRNA phylogenetic analysis as Pseudomonas chengduensis and Pseudomonas plecoglossicida, respectively. Both strains showed higher PCP degradation in free form as opposed to a reduced activity in immobilized and respiratory impaired form. The addition of pyruvate resulted in about 80% PCP degradation in 5 days for P. chengduensis, on the other hand, P. plecoglossicida showed the same result under anaerobic conditions whether pyruvate was added or not. Phenazine and the outer membrane c-type cytochrome were reported only for P. chengduensis as opposed to P. plecoglossicida. The results indicate that despite following different approaches in PCP degradation, both strains are useful in PCP clean-up under aerobic and anaerobic conditions and in free direct contact. The degradation is enhanced via ES. This is considered both an effective and feasible technology for in situ clean-up of contaminated sites or on-site bioreactors.


Assuntos
Pentaclorofenol , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Elétrons , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo
17.
J Fluoresc ; 28(1): 41-49, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28785904

RESUMO

Biocompatible polyacrylic acid functionalized CdSe/Cu quantum dot conjugates were synthesized to be used for biomolecules detection. The study results demonstrate the conjugation of the 2.5-3 nm QD with gram negative bacteria with a low detection limit of 28 cfu/ml. The photoluminescence (PL) intensity was correlated to bacterial count, cellular proteins and exopolysaccharides in the tested samples. Confocal Scanning Laser Microscopy (CSLM) images showed significant QD uptake within the cells, both cytoplasm and DNA were the predominant targeted biomolecules, higher fluorescent uptake was shown in gram negative bacteria than that observed for gram positive bacteria. Moreover, PL showed that there was a distinction between live and dead cells as well as gram negative and gram positive cells. Cell viability was not affected even after 6 days (100% viability) rendering it a non-toxic QD. The method is simple and is performed in a single step within approximately 10 min as compared to multi-step protocols for classical microbial count or fluorescent dye staining. All the above results indicate that the CdSe/Cu-PAA QDs are suitable for biomolecule detection, bio-labeling and bioimaging applications.


Assuntos
Resinas Acrílicas/química , Materiais Biocompatíveis/administração & dosagem , Compostos de Cádmio/química , Cobre/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Pontos Quânticos/química , Compostos de Selênio/química , Materiais Biocompatíveis/química , Sobrevivência Celular , Corantes Fluorescentes/química , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento
18.
Fungal Genet Biol ; 105: 1-7, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28552364

RESUMO

Aspergillus niger was previously demonstrated to decolorize the commercial dye malachite green (MG) and this process was enhanced under calcium chloride (CaCl2) treatment. Previous data also suggested that the decolorization process is related to mitochondrial cytochrome c. In the current work, we analyzed in depth the specific relationship between CaCl2 treatment and MG decolorization. Gene expression analysis (RNA Seq) using Next Generation Sequencing (NGS) revealed up-regulation of 28 genes that are directly or indirectly associated with stress response functions as early as 30min of CaCl2 treatment; these data further strengthen our previous findings that CaCl2 treatment induces a stress response in A. niger which enhances the ability to decolorize MG. A significant increase in fluorescence observed by MitoTracker dye suggests that CaCl2 treatment also increased mitochondrial membrane potential. Isolated mitochondrial membrane protein fractions obtained from A. niger grown under standard growth conditions decolorized MG in the presence of NADH and decolorization was enhanced in samples isolated from CaCl2-treated A. niger cultures. Treatment of whole mitochondrial fraction with KCN which inhibits electron transport by cytochrome c oxidase and Triton-X 100 which disrupts mitochondrial membrane integrity suggests that cyanide sensitive cytochrome c oxidase activity is a key biochemical step in MG decolorization. This suggestion was confirmed by the addition of palladium α-lipoic acid complex (PLAC) which resulted in an initial increase in decolorization. Although the role of cytochrome c and cytochrome c oxidase was confirmed at the biochemical level, changes in levels of transcripts encoding these enzymes after CaCl2 treatment were not found to be statistically significant in RNA Seq analysis. These data suggest that the regulation of cytochrome c enzymes occur predominantly at the post-transcriptional level under CaCl2 stress. Thus, using global transcriptomics and biochemical approaches, our study provides a molecular association between fungal mitochondrial electron transfer systems and MG decolorization.


Assuntos
Aspergillus niger/metabolismo , Cloreto de Cálcio/metabolismo , Corantes/metabolismo , Mitocôndrias/metabolismo , Corantes de Rosanilina/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Transporte de Elétrons , Perfilação da Expressão Gênica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico
19.
World J Microbiol Biotechnol ; 33(3): 56, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28229332

RESUMO

Dissimilatory metal reducing bacteria can exchange electrons extracellularly and hold great promise for their use in simultaneous wastewater treatment and electricity production. This study investigated the role of riboflavin, an electron carrier, in the decolourisation of Congo red in microbial fuel cells (MFCs) using Shewanella oneidensis MR-1 as a model organism. The contribution of the membrane-bound protein MtrC to the decolourisation process was also investigated. Within the range of riboflavin concentrations tested, 20 µM was found to be the best with >95% of the dye (initial concentration 200 mg/L) decolourised in MFCs within 50 h compared to 90% in the case where no riboflavin was added. The corresponding maximum power density was 45 mW/m2. There was no significant difference in the overall decolourisation efficiencies of Shewanela oneidensis MR-1 ΔMtrC mutants compared to the wild type. However, in terms of power production the mutant produced more power (Pmax 76 mW/m2) compared to the wild type (Pmax 46 mW/m2) which was attributed to higher levels of riboflavin secreted in solution. Decolourisation efficiencies in non-MFC systems (anaerobic bottles) were similar to those under MFC systems indicating that electricity generation in MFCs does not impair dye decolourisation efficiencies. The results suggest that riboflavin enhances both decolourisation of dyes and simultaneous electricity production in MFCs.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Vermelho Congo/química , Grupo dos Citocromos c/metabolismo , Riboflavina/metabolismo , Shewanella/fisiologia , Biodegradação Ambiental , Eletricidade , Eletrodos/microbiologia , Águas Residuárias/química , Águas Residuárias/microbiologia
20.
Environ Technol ; 37(20): 2580-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26936484

RESUMO

Fungi are known to be affected by external environmental stimuli, resulting in different stress response effects, which in turn could be used to enhance its biodegrading ability. In a previous study, ethanol was used to manipulate cell-cell and cell-surface interaction to prevent cell loss and maximize the usage of Penicillium purpurogenum cells in the media, a correlation was drawn between ethanol oxidative stress, surface-bound proteins and fungal adhesion. The present study focuses on a more detailed study of the effect of ethanol on the same fungus. The results show that the presence of Yap1p gene and the detection of an oxidized form of glutathione (GSSG) suggest that a stress response might be involved in the adhesion process. The process of adhesion could be described as a signaling process and it is affected by the germ tube formation as an initial step in adhesion. Protein profile showed polymorphism in surface-bound proteins for cultures amended with ethanol when compared to control cultures. Ethanol also affected the DNA polymorphic profile of DNA, rendering the fungus genetically variable. P. purpurogenum produced phenol oxidase enzyme and could be used to degrade total phenols in olive mill waste water without the formation of biofilm on the surface of the containers.


Assuntos
Reatores Biológicos/microbiologia , Etanol/farmacologia , Penicillium , Adesão Celular , Proteínas Fúngicas , Olea/química , Penicillium/efeitos dos fármacos , Penicillium/metabolismo , Penicillium/fisiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Águas Residuárias , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...